Spatial structure of summertime ionospheric plasma near magnetic noon
نویسندگان
چکیده
Results are presented from a multi-instrument study of the spatial distribution of the summertime, polar ionospheric electron density under conditions of relatively stable IMF Bz<0. The EISCAT Svalbard radar revealed a region of enhanced densities near magnetic noon that, when comparing radar scans from different local times, appeared to be spatially confined in longitude. This was identified as the tongue-of-ionisation (TOI) that comprised photoionisation of sub-auroral origin that is drawn poleward into the polar cap by the anti-sunward flow of the high-latitude convection. The TOI was bounded in longitude by high-latitude troughs; the pre-noon trough on the morning side with a minimum near 78 N and the post-noon trough on the afternoon side with a minimum at 80 N. Complementary measurements by radio tomography, the SuperDARN radars, and a DMSP satellite, together with comparisons with earlier modelling work, provided supporting evidence for the interpretation of the density structuring, and highlighted the role of plasma convection in the formation of summertime plasma distribution. Soft particle precipitation played only a secondary role in the modulation of the large summertime densities entering the polar cap.
منابع مشابه
Evidence for solar-production as a source of polar-cap plasma
The focus of the study is a region of enhanced ionospheric densities observed by the EISCAT Svalbard radar in the polar F-region near local magnetic noon under conditions of IMF Bz<0. Multi-instrument observations, using optical, spacecraft and radar instrumentation, together with radio tomographic imaging, have been used to identify the source of the enhancement and establish the background io...
متن کاملStorm enhanced density: magnetic conjugacy effects
In the early phases of a geomagnetic storm, the low and mid-latitude ionosphere are greatly perturbed. Large SAPS electric fields map earthward from the perturbed ring current overlapping and eroding the outer plasmasphere and mid-latitude ionosphere, drawing out extended plumes of storm enhanced density (SED). We use combined satellite and ground-based observations to investigate the degree of...
متن کاملA numerical model of the ionospheric signatures of time-varying magnetic reconnection: I. ionospheric convection
This paper presents a numerical model for predicting the evolution of the pattern of ionospheric convection in response to general time-dependent magnetic reconnection at the dayside magnetopause and in the cross-tail current sheet of the geomagnetic tail. The model quantifies the concepts of ionospheric flow excitation by Cowley and Lockwood (1992), assuming a uniform spatial distribution of i...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملIonospheric signatures of magnetospheric boundaries in the post-noon sector
Spatial structures in ionospheric electron density revealed in a tomographic image have been identi®ed with auroral forms and related to their sources in precipitating particles observed by DMSP satellites. The observations of plasma enhancements relate to discrete auroral arcs seen in the post-noon sector, identi®ed by both redand green-line emissions measured by a meridional scanning photomet...
متن کامل